Oscilloscope Basics What my Digital Oscilloscope is capable of ...

Contact introduction

- Francesco Raimondi
 - DSM (Distributor Sales Manager)
 - Francesco.Raimondi@Teledyne.com
- Zsolt Kapitany
 - 🍫 Sales Engineer
 - Zs.Kapitany@elsinco.hu
 - Roland PalkovicsSales Engineer
 - R.palkovics@elsinco.hu

Overview

- Fundamentals
 - Scope general architecture
 - Analog and Digital BandWidth
 - Sample rate, Time Windows, trigger time
 - Aliasing
 - Vertical resolution
- Screen display
 - How can 1.000.000 points be represented with 1000 pixels?
 - How to use all available vertical bits
 - YX display

oversview

- Trigger
 - Trigger modes
 - Trigger definition
 - Trigger rate
 - Sequence Mode

Oscilloscope Fundamentals

Basic Setup of a Digital Oscilloscope

TELEDYNE LECROY

Everywhere**you**look"

ACQUISITION

Input Amplifier Analog/Digital Converter Acquisition Memory Trigger-Logic Time Base

DISPLAY

Display Processor Display Grid

MEASUREMENT/ ANALYSIS

Processor Math Co-Processor Processor Memory

• DOCUMENTATION

Hard Drive(s) USB-Stick Interfaces

Analog Bandwidth

- Frequency at which a sinusoidal input signal is attenuated to 70.7% of the true signal amplitude (-3dBbandwidth)
- This figure generally depends on the analog bandwidth of the input amplifier
- The bandwidth can be limited depending on the software (software filter); upgrade options can be available

NE LECROY

Everywhere**you**look

Rise Time

Everywhereyoulook

• For oscilloscopes up to 2 GHz: Rise time (10% .. 90%) is described as follows

But there is also a digital bandwidth depending on the sampling

Analog Bandwidth

NE LECROY

Everywhere**you**look

E N

bandwidth of the analog amplifier

- Digital Bandwidth
 - Depends on the real time sampling rate
 - Frequency response of the analog/digital converters
 - Memory depth and sampling rate define the time that can be captured

Sampling Rate

 Maximum Sampling Rate, shown in Samples/Sec. [S/s], refers to the frequency at which the A/D Converter samples the signal per second

We distinguish between:

• Single Shot:

Maximum sampling rate for single signals

 Random Interleave / Equivalent Time Sampling:

Repeated sampling of a periodic signal with a stable trigger point

Real Time Sampling

<u>Ever</u>ywhere**you**look

• Sine Wave:

- Single frequency
- Sampling rate > 2 x max. frequency
- 🏷 'Nyquist-Theorem'
- Pulse, Rectangular Waves
 - 🄄 Broadband
 - Sampling rate > 10 x Max. frequency
- Realistically:
 - 10-fold oversampling

Sampling at 1.6GHz

All harmonics are included...Signal perfectly reconstructed

Peaks	Frequency	Amplitude
1	40.00 MHz	-6 dBm
2	120.00 MHz	-25 dBm
3	199.99 MHz	-38 dBm
4	360.03 MHz	-47 dBm
5	280.00 MHz	-48 dBm
6	520.04 MHz	-55 dBm
7	679.96 MHz	-57 dBm
8	600.00 MHz	-58 dBm
9	439.98 MHz	-59 dBm
10	759.97 MHz	-62 dBm

All harmonics above 500MHz Will be flipped like in a mirror in the 500MHz-DC band

F6 = 520 -500 = 20 will be flipped at 500-20= 480 F8 =600 -500 = 100 will be flipped at 500-100 = 400 F7 = 680 -500=180 will be flipped at 500-180 =320

TELEDYNE LECROY

Everywhere**you**look

Without antialising filter we are supposed to have harmonics components not really present in the original signal

Folded spectrum...the signal reconstructed is not my signal

Folded spectrum...the signal reconstructed is not my signal

Peaks	Frequency	Amplitude	
1	40.000 MHz	-6 dBm	
2	120.000 MHz	-24 dBm	
3	50.000 MHz	-39 dBm	
4	110.001 MHz	-48 dBm	
5	30.005 MHz	-49 dBm	
6	19.994 MHz	-57 dBm	
7	59.998 MHz	-59 dBm	
8	99.976 MHz	-61 dBm	
9	70.007 MHz	-63 dBm	

At 250MS/s We have harmonics below the fundamental

Aliasing

Reason: Sampling rate too low

Consequence: wrong unstable waveform, wrong measurements, false artifacts and frequency components...

Aliasing

Everywhereyoulook"

Relationship between Memory Length & Sample Rate

$$Sample Rate = \frac{Memory Length}{Time Base * 10 div}$$

- A larger memory enables longer recording at a higher sampling rate
- Examples (at 100 µs/div):
 20'000 points / 1 ms = 20 MS/s
 1'000'000 points / 1 ms = 1 GS/s
 25'000'000 points / 1 ms = 25 GS/s

Everywhere**you**look

Vertical Resolution of an Oscilloscope

- The number of Bits of the ADC determines the vertical resolution of the oscilloscope
- A higher vertical resolution means that smaller details are visible and more precise measurements are possible
- An improvement of the accuracy is essential to be able convert the higher resolution in higher precision of measurements

Everywhere**you**look

Teledyne LeCroy HDO Series with 12-Bit A/D converter

16x higher Resolution

What Does the Vertical Definition Mean in Practice?

• Available quantization levels of the ADC = 2^{N} (N = Number of Bits)

ADC resolution	Amount of possible values	Dynamic
8 Bit	256	~48 dB
12 Bit	4'096	~72 dB

- This means that a 1.0 V measurement window can be resolved as follows:
 - \checkmark 8 Bit with 256 levels \Rightarrow 3.91 mV resolution
 - 12 Bit with 4'096 levels \Rightarrow 0.24 mV resolution

Everywhere**you**look

HD4096 Advantages – More Signal Details

- Shutdown processes can be better evaluated with real 12-Bit resolution
 - Averaging cannot be used because it is an isolated event

Shutdown process recorded with an 8-Bit oscilloscope

The oscillation disappears in the noise

The oscillation is clearly visible

Screen Display

- Data reduction for display \Rightarrow max/min display
- Grouping of the raw data
- Determine of max/min values
- Display the max/min values in the form of a vertical bar in the screen columns
- 'Visual noise' by displaying all acquired data points

Everywhereyoulook

1'000 Screen Columns

Trace 2Ms – pixels on screen less than 1000

LECROY

Everywhereyoulook

10/31/2019 26

Vertical Resolution: how to use full vertical dynamic range

bits (8 or 12) of the A/D converter are used on the full vertical scale...setting the trace to occupy at least 80% of the vertical grid helps using as many bits as possible...using the 100% of the scale can create problems because of clipping If the signal is scaled to ¼th of the grid, the vertical resolution of an 8 Bit scope is reduced to 6 Bit. If the ADC is 12 bit then you can still count on full 10 bit/sample

Avoid signal clipping: the scope gives you warnings

Multi-Grid Display

- The mult-grid allows independent optimal scaling of different signals without overlap.
- Use all vertical bit
- Better accuracy
- More room for vertical zoom
- Make sure noise is not clipping the signal

Grids / Display

- Depending on the oscilloscope model and installed options, several display (grid) settings are available.
- Example: display split horizontally or vertically into 2 grids.
- Depending on the model, up to 32 different display modes are available.

Select Grid					
Category	Grid				
Single Display	Auto	Single	Dual	Quad	^
All	Octal	Tandem	Quattro	Twelve	
	Sixteen	Twenty	XY XY	DualXY	
	2 2		eee eee	rere Rere	~
			Cancel		

XY Display

Both traces must have the same number of samples

X has 10 grids Y has 8 grids H and V scales still have the same V/div, X axis is only using 4 grids

The ellipse is caused by rectangular and not square grids

Select Display, Display Setup, XY setup

Ye, we are Limited to 12 XY plots

Predefined XY displays

TELEDYNE LECROY

Everywhere**you**look"

XY display one of many applications: B-H Curve

Power analysis SW package

Traces captured are Voltage and Current At the inductor

$$B(t) = \frac{A}{N} \int V(t) \, dt$$

$$H(t) = \frac{N}{L_e} I(t)$$

How many grids are available?

Depends on the scope model, number of channels, applications

These are present on HDO6K

Some models offer Q-Scape Display

TELEDYNE LECROY

Everywhereyoulook"

Screen Display – Zoom

TELEDYNE LECROY

Everywhereyoulook"

Zoom Functions are never enough...

Everywhere**you**look

Any trace can have as many zoom as available across the entire acquisition, it can be a captured trace a zoom or any math function...no restriction

Multizoom can link multiple zoomed traces together for faster signal analysis

Number of ZOOM traces depends on the scope model as well

HDO6K has 8 HDO4K has 4 Higher level Model have 12

Trigger – Main purpose and overview

- Start of Acquisition for Single Events
- Synchronizing the Acquisition ⇒ Stable Image
- Trigger Modes
 - Solution AUTO Trigger:
 - Solution NORMAL Trigger:
 - SINGLE Trigger:

continuous triggering on internal time base

continuous triggering on defined event (edge, pulse width, logic, smart, ...)

single triggering on defined event (edge, pulse width, logic, smart, TV, ...)

Trigger Sources:

Everywhereyoulook

- 🏷 🛛 Analog Channels 1-4
- bigital Channels
- 🄄 External Trigger Input

Tbase	-2.24 ms	Trigger	CIIDC
	1.00 ms/div	Stop	464 mV
500 kS	50 MS/s	Edge	Positive

Trigger – Modes

Oscilloscopes have 4 trigger states

- Auto-Trigger
 - If the preset trigger condition is <u>not</u> met within a defined time window, an automatic trigger event is generated regardless
- Normal-Trigger
 - The trigger event only takes place if the preset trigger condition is met
- Single-Trigger
 - There will be one trigger event at the first time the preset trigger condition is met, after this the stop-mode is activated
- Stop-Mode
 - No further trigger events, the last capture is shown on the screen

Triggers in Modern DSOs

- The bandwidth of the edge trigger should be ≥ the analog bandwidth of the DSO
- The DSO can be equipped with many trigger functions^{*}. Most common are:
 - 1. Edge
 - 2. Width
 - 3. Qualified
 - 4. Pattern
 - 5. TV
 - 6. Smart
 - 7. Serial

* Trigger functions are covered in more detail in the advanced scope seminar

Trigger – Example Edge Trigger

Trigger: pulse Width - Qualified

Trigger Rate

Although the trigger has been re-armed, a new acquisition cannot be started because the signal processing is not yet complete.

Sequence mode*

- Fastest trigger mode
 - Acquisition memory is divided in segments
 - At each new trigger event a new segment is filled with samples and a trigger time stamp is saved
 - Scope will show the captured segments only when all segments are captured or STOP trigger is pressed

*Topic fully covered in the advanced Scope seminar

